FRACTIONS INTERVENTION FOR STRUGGLING 5TH GRADE STUDENTS

Robin Schumacher Madhavi Jayanthi Russell Gersten Joe Dimino

Funded by NSF Grant DRL-1535214


Pacific Coast Research Conference February 2, 2018

Instructional Research Group

January 30, 2018

EDUCATION WEEK

Students Thrive When They See Purpose in Their Learning

Matthew Cook, left, Darshan Patel, and Abby Simmons, all 8th graders in Armorel, Ark., display their different model attempts with a 3D printer to create a prosthetic leg for a one-legged duck.

—Photos courtesy of Armorel High School EAST

PURPOSE OF THE STUDY

TransMath® was adapted for small-group instruction to see the impact of a fractions intervention that...

- Proactively addresses grade-level curriculum
- Combines explicit instruction while working with students on articulating their understanding

FRACTIONS INTERVENTION

- 1. Aligned with CCSS-M Grade 4 and 5 standards
- 2. TransMath® Level 2 (Woodward & Stroh, 2015)
 - Grade-level material (Grade 5):
 - ✓ Adding and subtracting fractions with unlike denominators
 - ✓ Multiplication and division concepts
 - Foundational material (Grade 4):
 - ✓ Fraction magnitude and equivalence

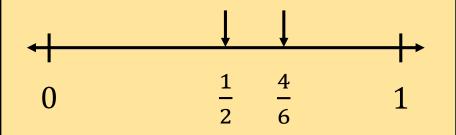
VISUAL REPRESENTATIONS

Concrete-Semi-Concrete-Abstract

- 1. Cuisenaire Rods
 - linear (link part-whole to measurement understanding)
- 2. Number Lines
 - consolidate rational number and whole number principles¹
 - superior representation for understanding magnitude¹

3. Equations

Visuals were used to scaffold:


- 1. Fraction Equivalence example: $\frac{3}{4}$ and $\frac{6}{8}$
- 2. Fraction Magnitude
- 3. Four operations $(+ \times \div)$

¹Siegler, et al. (2012)

COMPARING FRACTIONS WITH BENCHMARK NUMBERS & RELATIVE SIZE

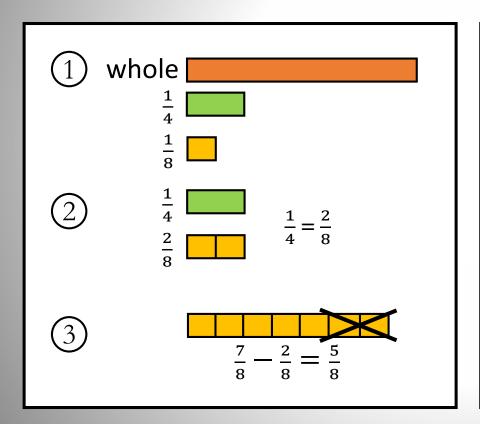
 $\frac{4}{6}$ is here because it is $\frac{1}{6}$ greater

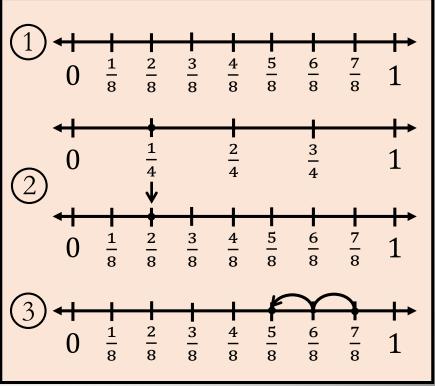
than $\frac{3}{6}$, which is equivalent to $\frac{1}{2}$.

 $\frac{1}{5}$ is close to 0 because 1 is relatively small compared to 5.

 $\frac{10}{12}$ is close to 1 because 10 is

relatively large compared to 12.

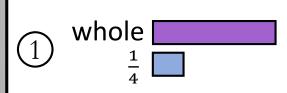

Therefore $\frac{1}{5} < \frac{10}{12}$.

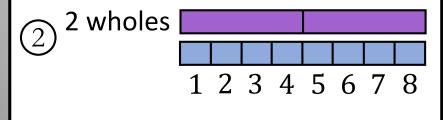


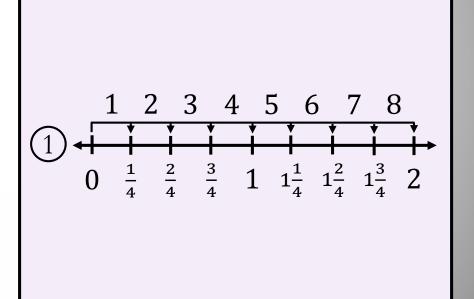
SUBTRACTION PROBLEM: $\frac{7}{8} - \frac{1}{4}$

Cuisenaire Rods

Number Line






DIVISION PROBLEM: $2 \div \frac{1}{4}$

Cuisenaire Rods

Number Line

ADAPTING TRANSMATH CURRICULUM FOR TIER 2

- 1. Changes after the pilot study:
 - Shifting activities to accomplish 35-minute lessons
 - Embedded review of addition and subtraction with unlike denominators after introducing multiplication and division
- 2. Guidance for written explanations:
 - Prompt card and vocabulary list

LESSON DESIGN

Review	5 minutes	Cumulative review
Explicit Instruction	10 minutes	Scaffold w/ visuals Model explanations Problem solving
Guided Practice	10 minutes	Practice new skills Explanations Problem solving
Independent Practice	10 minutes	Partner work Independent work

Explanations

Explanations
leveraged with
question shells¹

Immediate
feedback

¹Developed by Ball and Shaughnessy

RANDOMIZED CONTROLLED TRIAL

 Randomly assigned students, blocked by teacher, to two conditions:

Treatment

TransMath® Fractions
Intervention

Control/BAU

What is currently offered by the school

- 2. BAU varied across sites
- 3. Core mathematics instruction was common across conditions.

ANALYTIC SAMPLE

Fifth-Grade Students from 3 districts, 14 schools, 43 classrooms

District 1

5 schools

15 classrooms

District 2

6 schools

12 classrooms

District 3

3 schools

16 classrooms

Screened Using TUF-4 (15-38th Randomly Analytic
TUF-4 Percentile) Assigned Sample

Overall Attrition = 6.9%

Differential Attrition = 6.1%

Instructional Research Group

SAMPLE DIVERSITY

Race/Ethnicity	District 1	District 2	District 3	Total
African American/Black	3	19	6	28 (15%)
Asian	12	0	0	12 (6%)
Hispanic	0	30	2	32 (17%)
White	13	32	27	72 (38%)
Multiracial	34	10	0	44 (23%)

Student Demographic	Total			
Free & Reduced Lunch				
Yes	109 (58%)			
No	62 (33%)			
Missing	18 (9%)			
IEP/504				
Yes	15 (8%)			
No	82 (43%)			
Missing	92 (49%)			

Instructional Research Group

IMPLEMENTATION

Small-group intervention (n = 5)

Provided 3-4 times per week (52 lessons) for 35 minutes

Interventionists (retired teachers, math tutors)

IMPLEMENTATION FIDELITY

- 1. Fidelity of implementation:
 - Overall Quality (5-point Likert Scale)

Mean = 4.0

Range = 3.8 - 4.2

Overall Procedural

Mean = 80%

Range = 74% - 91%

- 2. Areas of issue for interventionists:
 - Pacing
 - Behavior management
 - Scheduling interruptions

DATA ANALYSIS

- 1. Partially nested mixed-model to account for partial clustering:
 - Treatment students nested within tutoring groups and unclustered control students
- 2. Covariates
 - > WRAT4
 - > NLE 0-1
- 3. Random effects model

IMPACTS

		TUF4	TUF5	Fractions Procedure Test ^a	NLE 0-1 ^b	NLE 0-2 ^b
Fixed Effects	Condition (<i>TransMath</i>)	3.21 (.55)	2.33 (.46)	10.58 (1.33)	-10.86 (1.20)	-6.54 (.94)
	WRAT4 Pre	.16 (.02)	.14 (.02)	.38 (.06)	27 (.06)	22 (.05)
	NLE 0-1 Pre	14 (.02)	09 (.02)	32 (.05)	.37 (.05)	.35 (.04)
Hedges' g	Condition	0.776	0.652	1.043	-1.096	-0.794
ICC	Tutoring Groups	.30	.11	.23	.13	.01

^{*}All significant at p = .0001.*

^aJordan et al., 2013.

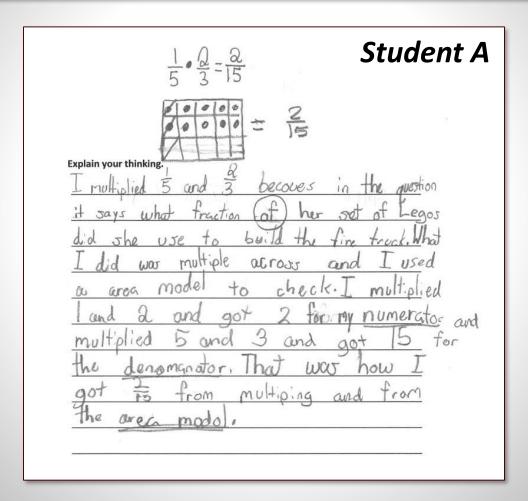
^bSiegler & Opfer, 2003.

OTHER INTERESTING FINDINGS

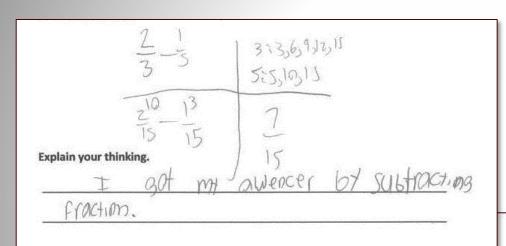
1. ICC:

- Tutoring Group = .14
- \rightarrow Tutor = .19
- 2. Performance Assessment Effects:
 - ightharpoonup Accuracy: g = .73 1.25
 - ightharpoonup Explanations: g = 1.04 1.12
- 3. Significant Moderators:
 - Free & Reduced Lunch
 - WRAT4 and NLE 0-1

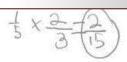
ASSESSMENT OF PERFORMANCE AND UNDERSTANDING


(aligned with contemporary state standards)

Solve the word problem. Use pictures, number lines, or numbers to show your problem solving.


Bella likes to build with Legos. In her set of Legos, $\frac{1}{5}$ are red. Bella used $\frac{2}{3}$ of her red Legos to build a fire truck. What fraction of her total set of Legos did she use to build the fire truck?

Explain your thinking.


PERFORMANCE ASSESSMENT

PERFORMANCE ASSESSMENT

Student B

Student C

Explain your thinking.

I did tot and got to for my

OUR RESEARCH TEAM

Karen Karp
Keith Smolkowski
Kelly Haymond
Pam Foremski
Samantha Spallone
Christopher Tran

GENERAL CONSIDERATIONS

- 1. Content-specific fraction measure vs. measure of general math achievement:
 - > As a screener: fractions measure
 - > As a covariate: general math achievement
- Using common norms across districts vs. local norms

Across Districts	District 1	District 2	District 3
15-38 th percentile	10-30 th percentile	30-65 th percentile	7-27 th percentile