TEACHING FRACTION CONCEPTS TO AT-RISK FIFTH GRADERS USING THE NUMBER LINE AND CUISENAIRE RODS

Robin F. Schumacher, Russell M. Gersten, Joseph A. Domino, & Madhavi Jayanthi

CEC 2017 Boston, MA

Instructional Research Group

Fraction Intervention

- Goal: Build fifth grade struggling students' conceptual and procedural knowledge of foundational as well as grade level fractions content.
- Curriculum: 54 35-minute fractions lessons from *TransMath*® (Level 2; Woodward & Stroh, 2016).
- Fractions Content: (a) Aligned with fourth and fifth grade Commons Core State Standards in mathematics; (b) focus on developing student understanding in addition to procedural competence; (c) addressed foundational fraction concepts as well concepts underlying the four operations.
- Key Representations: Number lines and Cuisenaire rods.

Pilot Study

- 15 at-risk students were randomly assigned to treatment (fractions Intervention) and control (business as usual; 10 treatment, 5 control).
- Intervention was provided 4 days week.
- Each intervention group included 5 students.
- Tutors were research staff with experience in teaching struggling students.

Results

- Overall, students who received the fractions intervention (n=10) did better than students who did not receive the fractions intervention (n=5). See table below.
- With a small sample size, these should be interpreted with caution.

Student Performance on Fractions Post-test Measures

	Treatment Post-test (n = 9)		Control Post-test (n = 5)		
Measure	Mean	SD	Mean	SD	Hedges' g
Test of Understanding Fractions, Fourth-Grade ^a	18.22	2.95	12.60	5.46	1.418*
Test of Understanding Fractions, Fifth-Grade	11.89	2.42	8.80	3.90	1.031~
Curriculum Aligned Fraction Measure	19.56	2.24	12.20	5.85	1.915~
Test of Fractions Procedures	16.89	4.62	10.60	6.03	1.225*
Number Line Estimation 0-1b	3.97	0.77	20.21	8.67	3.277**
Number Line Estimation 0-2°	8.82	4.20	15.70	5.73	1.446*

 $[\]sim$ Significant at p = .10; * significant at p = .05; ** significant at p = .01.

^aPretest mean for treatment group = 10.67 (SD = 1.32); pretest mean for control group = 10.40 (SD = 1.14). ^bFor this measure, scores are a representation of percent absolute error; therefore, a low score corresponds to high performance. ^cFor this measure, scores are a representation of percent absolute error; therefore, a low score corresponds to high performance.

Understanding Fractions & Equivalences

Number Line Estimation

Using Relative Size

Comparing Fraction to Benchmark

"I know $\frac{4}{6}$ is here because it is $\frac{1}{6}$ greater than $\frac{3}{6}$, which is equivalent to $\frac{1}{2}$."

Comparing Fractions Using Relative Size

$$\frac{1}{5} < \frac{10}{12}$$

" $\frac{1}{5}$ is close to 0 because 1 is relatively small compared to 5.

 $\frac{10}{12}$ is close to 1 because 10 is relatively large compared to 12.

Therefore
$$\frac{1}{5} < \frac{10}{12}$$
."

Adding & Subtracting Fractions with Like Denominators

Addition Problem: $\frac{1}{3} + \frac{2}{3} = \frac{3}{3}$

Cuisenaire Rods

The whole

$$\frac{1}{3}$$

Number Line

Subtraction Problem: $\frac{4}{6} - \frac{2}{6} = \frac{2}{6}$

Cuisenaire Rods

The whole

Number Line

Adding & Subtracting fractions with Unlike Denominators

Understanding Multiplication Problems

"Whole number times a fraction"

$$2 \times \frac{2}{6}$$
 or 2 "groups of" $\frac{2}{6}$

Number Line

Cuisenaire Rods

Standard Algorithm

Multiple the numerators across: $2 \times \frac{2}{6} = \frac{2}{1} \times \frac{2}{6} = \frac{4}{6}$ Multiple the denominators across:

Then simplify: $\frac{4}{6} = \frac{2}{3}$

Scaffold Learning for Fraction Multiplication Problems

"Fraction times a fraction"

$$\frac{1}{2} \times \frac{2}{6} \text{ or } \frac{1}{2} \text{ "of" } \frac{2}{6}$$

Cuisenaire Rods

Area Model

Product of
$$\frac{1}{2} \times \frac{2}{6} = \frac{2}{12}$$

Standard Algorithm

Multiply the numerators across:

$$\frac{1}{2} \times \frac{2}{6} = \frac{2}{12}$$

Multiply the denominators across

Then simplify:
$$\frac{2}{12} = \frac{1}{6}$$

Demonstration of the Pattern of Multiplication

The problem $\frac{1}{2} \times \frac{2}{6}$ is the same as $\frac{1}{2}$ of $\frac{2}{6}$.

Because $\frac{1}{2}$ of $\frac{2}{6}$ is less than $\frac{2}{6}$, the product will be less than $\frac{2}{6}$.

$$\frac{1}{2} \times \frac{2}{6} = \frac{2}{12} = \frac{1}{6}$$

 $\frac{1}{2} \times \frac{2}{6} = \frac{2}{12} = \frac{1}{6}$ The product of $\frac{1}{6}$ is less than $\frac{2}{6}$.

Understanding Division Problems

Problem: 8+2 = 4

A. From the perspective of how many in a group:

There are 8 pies. The pies are equally divided into two boxes. How many pies are in each box?

B. From the perspective of how many groups:

There are 8 pies. The pies are equally divided into boxes of two pies each. How many boxes are needed? (i.e., how many groups of 2 are there)?

Scaffold Learning of Fraction Division Problems

Problem:

I have 2 pies. If I cut a pie into fourths, how many pieces of pie are there?

That is, how many groups of $\frac{1}{4}$ are there in 2? Or how many fourths are in two?

Number Line

Cuisenaire Rods

Standard Algorithm

$$2 \div \frac{1}{4} = \frac{2}{1} \times \frac{4}{1} = \frac{8}{1} = 8$$

Answer: There are 8 groups of $\frac{1}{4}$ in 2.